Search results for "Gaussian Markov random field"
showing 5 items of 5 documents
Two-Stage Bayesian Approach for GWAS With Known Genealogy
2019
Genome-wide association studies (GWAS) aim to assess relationships between single nucleotide polymorphisms (SNPs) and diseases. They are one of the most popular problems in genetics, and have some peculiarities given the large number of SNPs compared to the number of subjects in the study. Individuals might not be independent, especially in animal breeding studies or genetic diseases in isolated populations with highly inbred individuals. We propose a family-based GWAS model in a two-stage approach comprising a dimension reduction and a subsequent model selection. The first stage, in which the genetic relatedness between the subjects is taken into account, selects the promising SNPs. The se…
Prediction and Surveillance Sampling Assessment in Plant Nurseries and Fields
2022
In this paper, we propose a structured additive regression (STAR) model for modeling the occurrence of a disease in fields or nurseries. The methodological approach involves a Gaussian field (GF) affected by a spatial process represented by an approximation to a Gaussian Markov random field (GMRF). This modeling allows the building of maps with prediction probabilities regarding the presence of a disease in plants using Bayesian kriging. The advantage of this modeling is its computational benefit when compared with known spatial hierarchical models and with the Bayesian inference based on Markov chain Monte Carlo (MCMC) methods. Inference through the use of the integrated nested Laplace app…
On the use of adaptive spatial weight matrices from disease mapping multivariate analyses
2020
Conditional autoregressive distributions are commonly used to model spatial dependence between nearby geographic units in disease mapping studies. These distributions induce spatial dependence by means of a spatial weights matrix that quantifies the strength of dependence between any two neighboring spatial units. The most common procedure for defining that spatial weights matrix is using an adjacency criterion. In that case, all pairs of spatial units with adjacent borders are given the same weight (typically 1) and the remaining non-adjacent units are assigned a weight of 0. However, assuming all spatial neighbors in a model to be equally influential could be possibly a too rigid or inapp…
[IC‐P‐029]: GAUSSIAN MARKOV RANDOM FIELDS FOR ASSESSING INTERMODAL REGIONAL ASSOCIATIONS IN PRODROMAL ALZHEIMER's DISEASE
2017
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…